
TextCritical.net - Bug #2681

Poor performance

04/23/2020 01:30 AM - Luke Murphey

Status: Closed Start date: 04/22/2020

Priority: Normal Due date:

Assignee: Luke Murphey % Done: 100%

Category: Estimated time: 0.00 hour

Target version: 4.0

Description

History

#1 - 04/23/2020 01:35 AM - Luke Murphey

I suspect that this is caused by excessive re-rending of the Reader view.

I also may want to debounce some of the calls: https://stackoverflow.com/questions/23123138/perform-debounce-in-react-js

#2 - 04/29/2020 06:41 PM - Luke Murphey

Pain points:

Searching the works list

#3 - 05/04/2020 08:02 PM - Luke Murphey

https://medium.com/@anuhosad/debouncing-events-with-react-b8c405c33273

#4 - 05/04/2020 08:10 PM - Luke Murphey

Getting this error: https://github.com/babel/babel/issues/9849

Seems fixed by importing regeneratorRuntime

#5 - 05/04/2020 08:52 PM - Luke Murphey

I denounced the fetch call. This isn't the issue since I am filtering on the client side.

const fetchWorks = () => fetch(ENDPOINT_WORKS_LISTS());

const fetchWorksDebounced = AwesomeDebouncePromise(fetchWorks, 1500);

 async loadInfo() {

 try {

 const response = await fetchWorksDebounced();

 const works = await response.json();

 this.setState({ works });

 } catch (e) {

 this.setState({

 error: e.toString(),

 });

 }

 }

I updated to filter onChange. This is better but a search for "josephus" is still slow.

05/06/2024 1/4

https://stackoverflow.com/questions/23123138/perform-debounce-in-react-js
https://medium.com/@anuhosad/debouncing-events-with-react-b8c405c33273
https://github.com/babel/babel/issues/9849

#6 - 05/04/2020 09:18 PM - Luke Murphey

Tried building an index. This is still slow.

https://nikitahl.com/how-to-find-an-item-in-a-javascript-array/

Says forLoop is best

https://developer.mozilla.org/en-US/docs/Web/API/Performance

Performance measuring API

https://www.andygup.net/fastest-way-to-find-an-item-in-a-javascript-array/

https://andrewdupont.net/2006/05/18/javascript-associative-arrays-considered-harmful/

Says to use an associative array

https://koukia.ca/top-6-ways-to-search-for-a-string-in-javascript-and-performance-benchmarks-ce3e9b81ad31

Regexes are faster but not by much

https://hackernoon.com/3-javascript-performance-mistakes-you-should-stop-doing-ebf84b9de951

For Loop and While is fast; Map is slow

#7 - 05/04/2020 11:03 PM - Luke Murphey

Obs:

Searching took 3 ms according to console.time()

The UI seems to hang; like CPU is held up

This seems to be a problem for the first render, but is better after the first slow search

Seeing tons of LazyLoad componentWillUnmount()

I see lots of commitNestedUnmounts() which each take 50ms

Qs:

What is taking so long?

searching takes 3ms

rendering is not the problem either

[Yes] Is CPU usage high?

Two cores seem to hit 50% for a while

[No] Does removing LazyLoad help?

No

Why is the first load so much faster?

[Yes] Does reducing the number help much?

Very much so

[No] Does removing the handlers help?

No

[No] Is it better the the search matches few entries?

Use https://react.semantic-ui.com/behaviors/visibility/

Does rendering almost nothing help?

Very much so

Its the image that is causing the problem

Solns:

[No] Keep rendered components in a list; don't re-render

Performance seems no better

Do the search on the server-side

This would allow me to load related works easier too

Use another component

https://cmichel.io/lazy-load-images-with-react/

05/06/2024 2/4

https://nikitahl.com/how-to-find-an-item-in-a-javascript-array/
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://www.andygup.net/fastest-way-to-find-an-item-in-a-javascript-array/
https://andrewdupont.net/2006/05/18/javascript-associative-arrays-considered-harmful/
https://koukia.ca/top-6-ways-to-search-for-a-string-in-javascript-and-performance-benchmarks-ce3e9b81ad31
https://hackernoon.com/3-javascript-performance-mistakes-you-should-stop-doing-ebf84b9de951
https://react.semantic-ui.com/behaviors/visibility/
https://cmichel.io/lazy-load-images-with-react/

#8 - 05/05/2020 02:33 AM - Luke Murphey

- File index.jsx added

Attaching modified Reader/index.jsx

#9 - 05/17/2020 07:41 PM - Luke Murphey

I could have these load on infinite scroll with https://react.semantic-ui.com/behaviors/visibility/

#10 - 05/19/2020 06:54 AM - Luke Murphey

[Violation] 'setTimeout' handler took 50ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 52ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 53ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 51ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 51ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 50ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 51ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 51ms

react-dom.development.js:174 [Violation] 'setTimeout' handler took 17306ms

[Violation] 'setTimeout' handler took 17332ms

[Violation] Forced reflow while executing JavaScript took 16757ms

#11 - 05/24/2020 03:40 PM - Luke Murphey

The

Qs:

Is there another callback that seems to work?

Solns:

Use another call back

onOnScreen: same

Show the first few regardless

Refs:

https://www.digitalocean.com/community/tutorials/react-components-viewport-react-visibility-sensor

#12 - 05/24/2020 03:40 PM - Luke Murphey

05/06/2024 3/4

https://react.semantic-ui.com/behaviors/visibility/
https://www.digitalocean.com/community/tutorials/react-components-viewport-react-visibility-sensor

- Status changed from New to Closed

- % Done changed from 0 to 100

Files

index.jsx 4.27 KB 05/05/2020 Luke Murphey

Powered by TCPDF (www.tcpdf.org)

05/06/2024 4/4

http://www.tcpdf.org

